Sungkyunkwan University

성균관대학교 로고

Truly, Global Leading University SKKU
메뉴버튼

성균관대학교 로고

Truly, Global Leading University SKKU
검색버튼
search form

성균관대학교 로고

메뉴닫기

SKKU News

home Campus Life SKKU NewsSKKU News

게시물 상세보기
TITLE Research on Future Electronic Devices
POSTER 김민선 NO 2317
DATE 2017.03.31 09:30:12 HIT 1237

Multifunctional Soft Electronics Lab. (Principle investigator; Prof Tae-il Kim; School of Chemical Engineering/Department of Biomedical Engineering/Graduate School of Human ICT Convergence) is studying next-generation electronics; flexible electronics, biomimetics and bio-integrated electronics which have recently attracted attention globally. In particular, the lab are leading worldwide in related research on brain penetrating electronics (Science, 2013) and spider's sensory receptor inspired electronics (Nature 2014).

 

The research themes of the laboratory are as follows:

 

1. Nanofabrication

Lithography in the semiconductor industry is the most important technique, and forming small patterns is indispensable for deriving low cost, high element characteristics. This laboratory is using an unconventional method instead of light illumination. It instead utilizes a polymer mold to form a nanoscale pattern sat low cost by utilizing various natural forces (such as capillary force, adhesiveness, surface tension, etc.). We have announced a large number of patents and papers every year, including ACS Applied Materials and Interface (7, p8070, 2016).

 

2. Biomimetics

We are imitating various natural structures with the nanofabrication technique we accomplished and aim for engineering reproduction of the unique properties. In particular, it was confirmed that adhesive strength increased several hundred times or more by mounting a gradient cilia structure of Gecko Lizard (Foot), Advanced Materials 21,p 6575 (2009). In addition, we developed nano-crack based sensors by spiders (Nature 516, p222 (2014)) and showed that it can be applied to wearable electronic devices, especially by voice signal.

 

3. Flexible Electronics

Flexible semiconductors utilizing organic materials have been receiving the spotlight recently. However, the material itself has the disadvantage of being easy to oxidize, and there are limitations to realizing the high characteristics required in the present era. This laboratory have unique techniques for assembling inorganic thin film devices on a sheet of plastic without device degradation. High performance inorganic electronics on flexible templates can be achieved.

 

4. Bio-integrated Electronics

We are conducting research on bio-electronics that can adhere to human skin or be inserted into the brain and organs. They can measure nerve signals or stimulate the brain with electronic devices. (Science 340, p211 (2013)). This has recently become an important starting point for the fusion research of Neuroscience and Engineering. Research on devices related to melting and disappearing in the body after operating for a certain period of time is ongoing.

PREV/NEXT
PREV Dr. Myeong Ok LIM appointed as a Professor at Loyola University in USA
NEXT Development of a pneumococcal vaccine preventing influenza virus as well as pneumococcal infections
vision 2020
  • Global Power Elite
  • Research with Impact
  • Globally First Choice
  • Pride in Top
HUMANITIES AND SOCIAL SCIENCES CAMPUS: (03063) 25-2, SUNGKYUNKWAN-RO, JONGNO-GU, SEOUL, KOREA
NATURAL SCIENCES CAMPUS: (16419) 2066, SEOBU-RO, JANGAN-GU, SUWON-SI, GYEONGGI-DO, KOREA

COPYRIGHT ⓒ 2014 SUNGKYUNKWAN UNIVERSITY ALL RIGHTS RESERVED. Contact us