Research Stories

Graphynes and Graphdiynes for Energy Storage and Catalytic Utilization

Theoretical Insights into Recent Advances

Chemistry
Prof. LEE, JINYONG
Dr. Hao Li and Dr. Jong Hyeon Lim

  • Graphynes and Graphdiynes for Energy Storage and Catalytic Utilization
  • Graphynes and Graphdiynes for Energy Storage and Catalytic Utilization
Scroll Down

Prof. Jin Yong Lee (Department of Chemistry) and his research team, including Dr. Hao Li and Dr. Jong Hyeon Lim (co-first authors) and Prof. Baotao Kang (University of Jinan, a doctoral student under Prof. Jin Yong Lee's supervision), published a theoretical studies on the application of the Graphyne and Graphdiyne (GDY) materials in various energy storage and catalytic utilization fields in Chemical Reviews (IF: 72.087) on April 26, 2023 under the title "Graphynes and Graphdiynes for Energy Storage and Catalytic Utilization: Theoretical Insights into Recent Advances." This paper explains the structural, optical, and electronic properties of the Graphyne family from the perspective of theoretical chemists. It particularly focuses on the diverse applications of GDY-based materials, which are the only experimentally reported members of the Graphyne family.


Various carbon allotropes have made significant contributions to humanity with their unique and outstanding properties. Among them, Graphyne materials, as carbon-based low-dimensional substances, possess excellent physical and chemical characteristics, making them suitable for a wide range of potential applications. Especially, GDY is the only synthesized member and has garnered practical applications in various research fields, such as energy storage and catalytic utilization, due to its large surface area, sp/sp2 hybrid orbitals, and a consistent band gap. However, most of the Graphyne family has only been studied theoretically, and there are still many unsynthesized Graphyne members. Therefore, the diverse theoretical and experimental results covered in this paper can provide important insights not only to researchers in the theoretical field but also to experimental researchers, stimulating more collaborative research between theory and experiments.



Efficient development of energy storage materials and catalysts is essential for addressing the global energy crisis. In this field, GDY is a promising material for various energy technologies, including electrocatalysis, photocatalysis, solar energy conversion, hydrogen storage, ion batteries, and supercapacitors. However, research on graphyne-based materials remains limited due to the lack of synthesis. This paper suggests potential applications in the field of energy materials by investigating the structure and electronic properties of graphyne through research. In the past decade, Prof. Jin Yong Lee has published dozens of papers on this topic in journals such as Chem. Eng. J., Energy & Environ. Mater., Carbon, App. Surf. Sci., Phys. Chem. Chem. Phys.


*Title:Graphynes and Graphdiynes for Energy Storage and Catalytic Utilization: Theoretical Insights into Recent Advances


COPYRIGHT ⓒ 2017 SUNGKYUNKWAN UNIVERSITY ALL RIGHTS RESERVED. Contact us