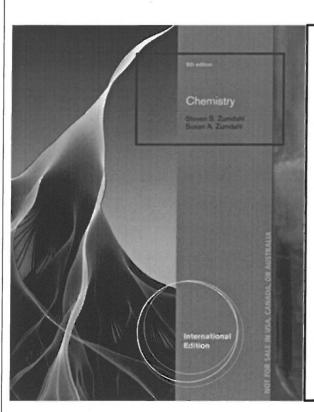
2018학년도 2학기 기초자연과학영역 학점취득특별시험 안내

Ⅳ. 일반화학2


1. 교재 : Chemistry

(제9판, 저자: Zumdahl)

2. 시험 범위: Chapter12. Chemical Kinetics ~

Chapter 22. Organic and Biological Molecules

(참고: Chapter 19는 범위가 아님)

- 12 Chemical Kinetics
- 13 Chemical Equilibrium
- 14 Acids and Bases
- 15 Acid-Base Equilbria
- 16 Solubility and Complex Ion
- 17 Spontaneity, Entropy, and Free Energy
- 18 Electrochemistry
- 20 The Representative Elements
- 21 Transition Metals and Coordination

Chemistry

22 Organic and Biological Molecules

- 3. 문제 및 답변 언어 : 영어로 문제 출제 및 영어로 답변
- 4. 출제 경향 및 안내 사항 : 객관식, 단답식, 주관식 풀이식으로 출 제됨 (기출 문제 참조)

5. 2018년도 2학기 학점취득특별시험 예제 문제 및 모범 답안

- **1.** Fill the blanks with 'T' for correct description or 'F' for false one in the following statements. [5 pt each]
- (T) Crystal lattice energy is always negative.
- (F) Nitrous acid is one of the strong acids.
- 2. Fill the blanks in the following statements. [5 pt]

(Thermodynamics) is the study of the energy transfers accompanying physical and chemical processes.

- 3. Select correct answer for the following questions. [10 pt]
- (c) Estimate the temperature at which $\triangle G = 0$ for the following reaction. NH₃(g) + HCl(g) \rightarrow NH₄Cl(s)

$$\triangle H = -176 \text{ kJ}; \triangle S = -284.5 \text{ J/K}$$

- (a) 467 K (b) 582 K (c) 619 K (d) 634 K (e) 680 K
- 4. Draw structure of following organic compound. [10 pt]
- 2,4-dimethylbenzoic acid.

5. Calculate pH and concentration of S²⁻, [S²⁻] of 0.10 M H₂S solution. For the H₂S, K_a values are as following. $K_{a1} = 1.0 \times 10^{-7}$, $K_{a2} = 1.0 \times 10^{-19}$. [20 pt]

[answer]

Because K_{1,} for H₂S is so small, we can ignore the H⁺ contribution from the K_{4,} reaction.

$$H_2S \qquad \rightleftharpoons \quad H^* \qquad \quad HS^- \qquad \quad K_{\,a_i} = 1.0 \times 10^{-7}$$

Initial
$$0.10 M$$
 ~0 0
Equil $0.10-x$ x x

$$\mathrm{K_{I_1}} = 1.0 \times 10^{-7} = \frac{x^2}{0.10 - x} \approx \frac{x^2}{0.10}, \quad x = [\mathrm{H^2}] = 1.0 \ \text{...} \ 10^{-4}; \quad \text{assumptions good.}$$

$$pH = -\log(1.0 \times 10^{-4}) = 4.00$$

Use the Ka, reaction to determine [S2-].

Initial
$$1.0 \times 10^{-4} M$$
 $1.0 \times 10^{-4} M$
Equil $1.0 \times 10^{-4} - x$ $1.0 \times 10^{-4} + x$

$$K_{z_{z}} = 1.0 \times 10^{-19} = \frac{(1.0 \times 10^{-4} + x)x}{(1.0 \times 10^{-4} - x)} \approx \frac{(1.0 \times 10^{-4})x}{1.0 \times 10^{-4}}$$

 $x = [S^{2-}] = 1.0 \times 10^{-19} M$; assumptions good.