Research Stories

니켈산화물 초박막을 활용한 차세대 페로브스카이트 태양전지 효율 및 안정성 개선

추후 상용화 가능한 고효율 고신뢰성 페로브스카이트 태양전지 개발의 밑거름이 될 것으로 기대

에너지과학과 신현정 교수

  • 니켈산화물 초박막을 활용한 차세대 페로브스카이트 태양전지 효율 및 안정성 개선
Scroll Down

태양에너지는 미래 전세계 에너지 공급의 핵심적인 역할을 담당할 것으로 기대되는 에너지원이다. 세계 각국에서 기후변화에 따른 환경 변화 대응의 일환으로 재생에너지로부터의 전기생산 비중을 높여가려고 노력하고 있으며 태양전지는 이러한 흐름에서 가장 큰 비중을 차지하리라 예상된다. 오래전부터 이미 많은 과학자들은 여러 종류의 태양광 변환 소재 및 공정을 연구하여 보다 더 효율적인 태양전지를 개발하고, 또한 대량생산을 위한 기술을 탐색해 오고 있다. 이상적인 태양전지의 대량 생산을 위해서는 태양광 변환 및 전극 소재 등이 지구상에 풍부하여 비용이 저렴하고, 또한 태양광 소자로서 고효율이면서도 안정적이어야 한다. 기존 기술은 주로 실리콘 태양전지로 상업화가 이루어졌지만 최근 연구자들은 새로운 물질로서 저비용 고효율 태양전지가 가능한 것으로 보이는 페로브스카이트 구조를 가지는 유무기 복합 소재에 주목하고 있다. 2013년 과학 분야의 10대 발전 중 하나로 꼽히는 페로브스카이트 태양전지는 효율의 급속한 개선(2008년 2.2%에서 2016년에는 22%로)으로 결정질 실리콘 태양전지의 효율(~25%)에 근접하였으며 값싼 재료와 용액 공정 기반의 제작과정으로 가격대비 우수한 성능을 갖춘 차세대 태양전지로서 기존의 실리콘 태양전지를 대체할 수 있을 것으로 기대되고 있다.


페로브스카이트는 ABX3 (X는 음이온, A와 B는 양이온, 이온의 크기는 A > B) 의 화학식으로 표현되는 물질이다. 여기에 태양전지로 사용되는 페로브스카이트는 A 이온으로 메틸암모늄이 주로 사용되고, B 이온은 납 또는 주석 이온, 그리고 X 이온은 할라이드계 이온들로 구성된다. 이 재료는 가시광을 흡수할 수 있는 적절한 밴드갭 (약 1.6 eV)과 높은 흡광계수, 그리고 0.1 ~ 1 μm에 이르는 긴 전하 수송 거리 등을 가지고 있어 태양전지 흡수체로써 매우 우수한 특성들을 보유하고 있다. 현재까지 가장 성공적으로 사용되어온 페로브스카이트 태양전지의 구조는 산화 티타늄과 Spiro-OMeTAD(2,2′,7,7′-tetrakis(N,N′-di-p-methoxyphenylamine)-9,9′-spirobifluorene) 전하전송층을 사용한다. 그러나 높은 효율에도 불구하고 전류-전압 히스테리시스(정방향과 역방향의 전류-전압 측정결과가 일치하지 않는 현상)가 있어 소자의 신뢰성을 떨어트린다. 반면에 PEDOT:PSS(poly(3,4-ethylenedioxythiophene) poly(styrene sulfonate))와 PCBM(phenyl C61 butyric acid methyl ester)을 이용한 페로브스카이트 태양전지도 제작이 가능하다. 이 구조로 태양전지를 제작했을 때 페로브스카이트의 신뢰성을 저해하는 전류-전압 히스테리시스가 상당히 개선되었다. 페로브스카이트 태양전지의 또 하나의 문제점은 낮은 안정성이다. 이 물질은 수분 및 열에 매우 취약하여 공기중의 노출에도 수 시간내에 전지의 효율이 급격하게 하락하는 단점이 있다. 따라서 페로브스카이트 태양전지의 안정성을 향상시키는 것이 효율 향상 못지 않게 실용화를 위한 중요한 도전과제이다.


본연구진은 페로브스카이트 태양전지에 사용되는 유기전하수송체인 PEDOT:PSS를 화학적으로 안정한 니켈산화물(NiO)로 대체하여 기존의 PEDOT:PSS 기반의 태양전지에 비견될만한 높은 광전변환효율 (16.40 %)을 보고하였다. PEDOT:PSS는 페로브스카이트 광흡수층에서 여기된 정공을 선택적으로 추출하는 계층으로 우수한 기능성을 지녔으나 흡습성이 있어 수분민감성인 페로브스카이트의 분해를 촉진한다. 반면에 니켈 산화물은 화학적 안정성을 보유하여 페로브스카이트 태양전지의 안정성을 향상시킬 수 있다. 기존의 니켈 산화물을 이용한 페로브스카이트 태양전지는 PEDOT:PSS을 기반으로 한 전지에 비해 낮은 광전류(photocurrent)와 채움률(fill factor)로 인해 광전변환효율이 낮았다. 본 연구진은 이를 개선할 방법으로 니켈산화물을 원자층 증착법(atomic layer deposition)을 통하여 수 나노 두께의 초박막을 형성하였다. 초박막 니켈 산화물은 이전의 벌크 두께를 가질 때에 비하여 향상된 홀수송능력을 보유하였으며, 높은 투명도를 지님으로써 페로브스카이트 태양전지가 높은 효율을 낼 수 있도록 하였다. 또한 이 태양전지는 비활성 기체 분위기에서 보관되었을 때 500시간 이상 초기 효율의 90%를 유지하였다. 이러한 연구결과는 적층 태양전지 구조를 통하여 효율 향상이 가능하고 추가적인 봉지기술 개발을 통하여 신뢰성을 높이며, 이를 통해 차후 상용화 가능한 고효율 고신뢰성 페로브스카이트 태양전지 개발의 밑거름이 될 것으로 기대된다. 본 연구는 나노과학 기술 관련 분야에 영향력이 큰 Nanoscale지에 게재되었다.


COPYRIGHT ⓒ 2017 SUNGKYUNKWAN UNIVERSITY ALL RIGHTS RESERVED. Contact us