Research Stories

THz기술용 신개념 전자소자 발명

연구팀은 이번 연구결과를 원천기술로써 특허를 출원하였으며, 향후 THz영역의 초고속무선통신, 고용량 영상처리를 필요로 하는 고해상도 AR/VR 등의 영역에 다양하게 활용될 수 있을 것으로 기대하고 있다.

기계공학부 이창구 교수 · 부디싱 박사, 파완스리바스타바 박사, 야시르하산 박사

  • THz기술용 신개념 전자소자 발명
  • THz기술용 신개념 전자소자 발명
Scroll Down

이창구 교수팀(기계공학부, 나노과학기술원)이 2차원 소재중 하나인 흑린을 이용하여 기존과 완전히 다른 새로운 구조의 테라헤르츠(THz)기술용 전자소자를 개발하였다. 테라헤르츠 기술은 전자기파 중에서 0.1-10 THz 주파수대역의 서브밀리미터(sub-milimeter)파장을 이용하는 기술을 말한다. 이 기술은 현재에는 X선과 같은 방사선이 없이도 사물을 투시해 볼 수 있는 공항의 보안용 검색기, 비파괴 검사기기, 의료용 영상진단기기 등에 활용되고 있으나, 향후에는 5G(5세대) 통신보다 수십배 빠른 6G 초고속무선통신, 암 진단 시스템, 신약개발, 신소재개발, 고속영상처리 등의 혁신적인 미래첨단기술에 두루 사용될 것으로 예상되고 있다.


이번에 연구팀이 개발한 전자소자는 흑린의 비정방성을 이용하여 세층으로 쌓아올림으로써 공진터널다이오드(Resonant tunneling diode)라는 전자소자로 구성되었다. 공진터널다이오드는 전하를 빠르게 이동시키기 위해 중간에 얇은 양자우물을 만들어 전하가 관통하듯이 지나가게 함으로써 THz와 같은 높은 주파수를 처리하는 초고속소자이다. 소자 내에서 전하는 양자우물의 양자구속효과로 생긴 양자에너지레벨을 통과할 때에 신호를 처리하게 된다. 기존에는 양자우물의 양쪽에 에너지준위가 높은 산화물과 같은 소재로 얇은 에너지장벽을 만들어 신호가 흐를 필요가 없을 때에는 양쪽의 전하가 서로 섞이지 않도록 하였다. 하지만, 이러한 벽은 아무리 얇아도 에너지준위가 높고 두께효과가 있어 신호를 감소시키는 원인이 될 수 밖에 없다. 이러한 이유로 에너지가 많이 소모될 수 밖에 없었다. 또한 어느 정도 이상의 높은 주파수대역을 구현하기가 쉽지가 않았다.


연구팀은 2차원소재의 비등방성을 이용하여 이러한 문제를 해결할 수 있었다. 우연히 흑린의 격자배열각도를 틀어서 90도가 되도록 겹쳐서 소자를 만들었을 때, 두 층 사이에 에너지장벽이 생기는 것을 확인하였다. 이는 물리적으로 존재하는 장벽이 아니므로 두께가 제로에 가까워 에너지손실이 극히 적게 나타나는 효과를 만들어냈다. 이를 통해 아주 높은 주파수일지라도 쉽게 신호를 처리할 수 있는 구조가 형성되었다. 연구팀은 또한 두 층 사이의 격자배열각도가 90도 뿐 아니라 30도와 60일 때도 비슷한 효과가 생기지만, 45도일 때는 그렇지 않은 것을 확인하였다. 이는 에너지장벽효과가 하나의 각도에서만이 아니라 여러 각도에서 생길 수 있는 현상으로써, 지금까지 알려진 것과는 패턴이 전혀 다른 층 사이의 상호작용이 발생하고 있다는 것을 암시한다고 할 수 있다. 한편 연구팀은 기존의 공진터널다이오드에서는 발견할 수 없었던, 두 번째의 양자에너지레벨을 통과하는 신호가 생길 수 있음을 발견하였다. 기존 소자에서는 이는 이론적으로만 가능할 뿐 높은 에너지손실로 인해 이러한 현상이 일어날 수가 없었다. 연구팀은 이번 연구결과를 원천기술로써 특허를 출원하였으며, 향후 THz영역의 초고속무선통신, 고용량 영상처리를 필요로 하는 고해상도 AR/VR 등의 영역에 다양하게 활용될 수 있을 것으로 기대하고 있다.


이번 연구는 네이처 자매지인 nature electronics 3월8일(영국 시간)자 온라인판으로 발표되었으며, 한국연구재단의 중견연구(2020R1A2C2014687)와 글로벌연구실(2016K1A1A2912707)사업의 지원으로 개발되었다.



그림 설명: 2차원소재인 흑린으로 만들어진 물리적장벽이 없는 공진터널링다이오드의 구조(위), 양자우물에서의 에너지레벨들 (아래)

그림 설명: 논문의 주저자들-부디싱 박사, 파완스리바스타바 박사, 야시르하산 박사, 이창구 교수 (왼쪽부터)




COPYRIGHT ⓒ 2017 SUNGKYUNKWAN UNIVERSITY ALL RIGHTS RESERVED. Contact us